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概要
Kaprekar 数とは，6174 = 7641 − 1467 のように，その数の各桁の数字を降順に並べた数と
昇順に並べた数との差が元の数に等しくなる自然数である．一般の自然数 t ≥ 2に対しても，同
様に t 進 Kaprekar 数が定義できる．t = 10 あるいは t = 2, 3 などの場合には，すべての t 進
Kaprekar 数が決定されているが，一般の t においては，そのような結果は知られていないよう
だ．本発表では，Kaprekar数を並び替える際の置換に着目して，t進 Kaprekar数を分類する試
みを紹介する．

1 はじめに
自然数 6174 は、各桁の値を降順に並べた数 7641 と，昇順に並べた数 1467 との差が元の数に一

致するという性質を持つ．このような性質を持つ自然数は Kaprekar 数と呼ばれ，1955 年 D. R.

Kaprekarによって考察されたことから，その名がつけられている．
Kaprekar数が，いつ，どのような形で現れるかについては，Prichett[2]，Iwasaki[1]によって整

理されており，次の 5系列がその一覧である．
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さらに，位取りの基数を一般の自然数 tまで拡張したものを t進 Kaprekar数という．
本研究では，これらの系列の最も基本的な部分，

495, 6174, 864197532, 97508421

に注目して単位 Kaprekar 数と呼び，これらの各桁の数を降順に並び替える置換を考察する．単位
Kaprekar数は 6174の置換クラス，495, 864197532の置換クラス，97508421の置換クラスの 3種
類に分類することができる．



記号
• 自然数 a = a1t

n−1 + · · ·+ an の t進表記を a1 · · · an(t) と書く．
• n文字の置換 σ に対し，

Pσ

a1
...
an

 =

aσ(1)
...

aσ(n)


により置換行列 Pσ を定義する．特に，nを明記する場合は Pn,σ と書く．

2 準備
定義 2.1 (t進 Kaprekar数). n, tを 2以上の自然数とする．t進 n桁の正整数 aに対して，a′, a′′

をそれぞれ t進表記した際の各位の数字を降順，昇順に並べた数とする．aの最上位の桁は 0であっ
てもよい．このとき，

a = a′ − a′′

を満たす aを t進 Kaprekar数という．

例 2.2. 10進法では，1桁，2桁の Kaprekar数は存在せず，3桁，4桁においては，Kaprekar数が
ただ 1つ存在する．実際に，

495 = 954− 459

6174 = 7641− 1467

である．

この性質は基数に依存するため，自然数 tに対し，t進法における Kaprekar数はそれぞれ異なる．

例 2.3. 3021(4) は 4進法において Kaprekar数であるが，10進法においては Kaprekar数とはなら
ない．実際に，3021(4) = 201(10) であるが，210− 012 = 198となる．

t進 n桁の自然数 a = a1t
n−1 + · · · + an を n次列ベクトル a = (a1 · · · an)

T と同一視する．こ
のとき，a′, a′′ のベクトル表示も，それぞれ a′, a′′ と書く．さらに，a′ = Paを満たす置換行列 P

を，aの降順置換行列と呼ぶ．一般に，ある自然数に対して降順置換行列は複数存在し得る．
n次ベクトルを t進 n桁の自然数とみなしたときの加算・減算は，各成分を 0以上 t− 1以下とす
るための補助的な項が必要となる．自然数 aを Kaprekar数とするとき，定義より

a− (a′ − a′′) = 0 (1)

である．しかし，左辺をベクトルとみなした場合，一般に 0ベクトルとはならない．ϵを

ϵ = a− (a′ − a′′) (2)

とおいて，その形を求める．



例 2.4 (ベクトル減算との差異). aを 10進 Kaprekar数 6174として考える．式 (1)は
6174− (7641− 1467) = 0

となり成立する．一方で，式 (2)は
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であり，これは次のように表すことができる：

ϵ =


0
0
10
10

−


0
1
1
0
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0
0
1
1

 .

ここで，I は単位行列であり，Lは左シフト行列

L =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0


である．（ここでは，I, Lは 4次行列だが，一般に n次でも I, Lの記号を使う．）
t進 n桁の Kaprekar数 aに対して，δa と cn(δa)を定義 2.5のように定めると，誤差 ϵは

ϵ = (tI − L)cn(δa)

と表すことができる．

定義 2.5. aを t進 n桁の自然数とする．

(i) a′, a′′ の第 i成分をそれぞれ a′i, a′′i とするとき，
δa = #{i | a′i = a′′i , 1 ≤ i ≤ [n/2]}.

(ii) 0 以上 [n/2]未満の自然数 δ に対して cn(δ)を，n次のベクトルで第 1成分から第 [n/2] − δ

成分まで 0，第 [n/2]− δ + 1成分から第 n成分まで 1であるものとする．

以上より，Kaprekar数のベクトル表記 aが満たすべき等式は，
a′ − a′′ = a+ (tI − L)cn(δa)

であることがわかった．さらに，aの降順置換行列 P を用いて等式を整理すると，
Pa− JPa = a+ (tI − L)cn(δa)

となる．ただし，J はベクトルを反転させる置換行列

J =


0 0 · · · 1
...

... . .
. ...

0 1 · · · 0
1 0 · · · 0





である．P を n次置換行列とするとき，行列M(P )を

M(P ) = (J − I)P + I

と定める．以上の考察により，次が示される．

命題 2.6. t進 n桁の Kaprekar数 aは，その降順置換行列 P について次の等式を満たす：

M(P )a = (tI − L)cn(δa). (3)

Kaprekar数 aから置換行列 P と δa を決定することは容易にできる．これとは逆に，与えられた
P と δ に対し，等式 (3)を aに関する方程式とみなして，解 aが Kaprekar数になるか考察する．

定義 2.7. tをパラメータとする．n次の置換行列 P と自然数 δ (0 ≤ δ < [n/2])に対し，方程式

M(P )x = (tI − L)cn(δ) (4)

を考える．方程式 (4)を Kaprekar方程式と呼ぶ．また，x(t)を (4)の解とし以下の用語を定める．

(i) 2以上の整数 t0 が存在し，x(t0)が t0 進 Kaprekar数となるとき，x(t)を有効な解と呼ぶ．
(ii) 有効な解のうち，(i)を満たす t0 が無数に存在するものを正則解と呼ぶ．また，正則解ではな

い有効な解 x(t)を特異解と呼ぶ．

命題 2.6，定義 2.7により，任意の t0 進 n桁 Kaprekar数 aは，必ずある Kaprekar方程式の有効
な解 x(t)により a = x(t0) と表せることがわかる．

定義 2.8. aを t0 進 n桁の Kaprekar数とする．a = x(t0)となる正則解 x(t)が存在しないとき，a

を特異 Kaprekar数と呼ぶ．

一般に，Kaprekar方程式 (4)が解 x(t)を持てば，x(t)の各成分は tの 1次式である．x(t) = ta+b

と表したとき，Coef x = a, Constx = bと定める．

命題 2.9. x(t)を n次置換行列 P に関するKaprekar方程式 (4)の解とし，a = Coef x, b = Constx

とおく．x(t)が正則解ならば次の式が成り立つ．

(i) i = 1, · · · , nについて，次のいずれかを満たす．
(i-1) 0 < ai < 1

(i-2) ai = 0かつ bi ≥ 0

(i-3) ai = 1かつ bi < 0

(ii) Pa = a′ である．i < j で (Pa)i = (Pa)j となるとき (Pb)i > (Pb)j である．

定義 2.10. Kaprekar方程式の解 x(t)が命題 2.9の (i), (ii)を満たすとき x(t)を半正則解と呼ぶ．

半正則解が正則解となるには，x(t)の各成分が同時に整数になる tの値の存在が求められる．

例 2.11. n = 4 としたとき，置換行列 P は 24 通り，δ は 2 通り存在する．これら 48 通りの組
み合わせについて Kaprekar方程式の解 x(t)を求めると，特異解が得られる組み合わせ，対応する



Kparekar数 aは

δ = 0, P = P(24), P(412), P(234), P(4123), a = 1001(2)

δ = 0, P = P(324), a = 3021(4)

δ = 1, P = P(14), P(142), P(143), a = 0111(2)

のみである．同様に，正則解が得られる組み合わせは

δ = 0, P = P(3124), x(t) =
1

5


3t

t− 5
4t− 5
2t


のみである．以上の解が有効な解のすべてとなる．

一般に，大きな桁の Kaprekar 数には，特定の数字の繰り返しが現れる．例えば，
6174, 631764, 63317664, 6333176664, · · · のような形である．これらの系列で増えていく
部分は，必ず 36の形をしており，この部分も Kaprekar数全体とほぼ同様の方程式により求めるこ
とができる．より具体的には，1つの Kaprekar方程式を部分に分解できるのである．

定義 2.12. Kaprekar方程式の解 x(t)が，ある置換行列 Pn,τ と Pki,σi
(i = 1, 2, · · · , j, j ≥ 2)

によって 
M(Pk1,σ1) O

M(Pk2,σ2
)

. . .

O M(Pkj ,σj )

Pn,τx =


(tI − L)ck1(δ1)
(t− 1)ck2

(δ2)
...

(t− 1)ckj (δj)


と表されるとき，x(t)を複合解，表されないとき，x(t)を単位解という．

以上の準備のもと，3種類の置換クラスを導入する．

定義 2.13. δ = 0の Kaprekar方程式

M(P )x = (tI − L)cn(0) (5)

に対して，置換行列の集合 Class A, Class B, Class Cを次のように定義する．

Class A = {P : n次置換行列 | n : 偶数，正則単位解 x(t)が方程式 (5)を満たす }
Class B = {P : n次置換行列 | n : 奇数，正則単位解 x(t)が方程式 (5)を満たす }
Class C = {P : n次置換行列 | 特異単位解 x(t)が方程式 (5)を満たす }

3 Class A

nを偶数，δ = 0とし，P を n次置換行列とした場合の Kaprekar方程式

M(P )x = (tI − L)cn(0)



の正則単位解について考察する．
まず，半正則単位解が (Z/sZ)×/⟨2,−1⟩（sはある奇数）の剰余類と対応することを示す．n次の

半正則単位解 x(t) が与えられたとき，Coef x を既約分数で表したときの分母の最小公倍数を s と
し，s(Coef x) = (a1, · · · , an)

T とすれば，1 ≤ ai < s (i = 1, · · · , n)であって，

{a1, · · · , an} ∈ (Z/sZ)×/⟨2,−1⟩

を満たす．逆に，
{b1, · · · , bn} ∈ (Z/sZ)×/⟨2,−1⟩

が与えられれば，1 ≤ bn < · · · < b1 < sとなるように bi (i = 1, · · · , n)を選び，b1
...
bn

 ≡ P


b1

...
bn

−

bn
...
b1


 (mod s)

を満たす置換行列 P による Kaprekar方程式を解くことで半正則単位解 x(t)が得られる．
半正則単位解を与える置換行列 P の特徴づけができる．

定義 3.1. 奇数 s ≥ 3に対して，Y ∈ (Z/sZ)×/⟨2,−1⟩ を自然数の集合とみなし，

y = (y1 · · · ym)T (y1, · · · , ym ∈ Y )

とおく．このとき，y′ − y′′ (mod s) の降順置換行列 P がただ一つ定まる．この P は s, Y から
定まる．k = min{y1, · · · , ym} とおくと，P は s, k からも定まるので P = As,k と書く．特に，
s = 2r ± 1であるものを A∗

s,k と表す．y は y′, y′′ のための便宜的な表記のため，成分の順番は問わ
ない．また，m = #⟨2,−1⟩であり，−1の位数は 2であることからmは偶数である．

命題 3.2. 偶数次，δ = 0のKaprekar方程式の半正則単位解の全体と，すべての奇数 s ≥ 3に対する
(Z/sZ)×/⟨2,−1⟩ の剰余類の全体は 1対 1に対応する．また，対応する置換行列の全体は {As,k}s,k
である．

これらの考察を踏まえて観察した限りでは，n次の正則単位解 x(t)は (Z/(2n
2 ± 1)Z)×/⟨2,−1⟩ の

剰余類と 1対 1に対応している．

例 3.3. n = 4では

δ = 0, P = P(3124), x(t) =
1

5


3t

t− 5
4t− 5
2t


が唯一の正則解であった．#⟨2,−1⟩ = 4となるのは s = 5に限られ，Y = {1, 2, 3, 4}である．

Coef x = y′ − y′′ = (3 1 4 2)T

により，A∗
5,1 = P(1243) である．

命題 3.2の ‘半正則’を ‘正則’に置き換えたとき，対応する置換行列の集合も小さくなる．実際に縮
小した範囲として予想されるのが {A∗

s,k}s,k である．



予想 3.4. 各偶数 n ≥ 2に対し，n次置換行列，δ = 0の Kaprekar方程式の正則単位解の全体と，

(Z/(2
n
2 + 1)Z)×/⟨2,−1⟩ ∪ (Z/(2

n
2 − 1)Z)×/⟨2,−1⟩

は 1対 1に対応する．また，対応する置換行列の全体は
{
A∗

2
n
2 +1,k

}
k
∪
{
A∗

2
n
2 −1,k

}
k
である．すな

わち，Class A = {A∗
s,k}s,k である．

例 3.5. {As,k}に属するが {A∗
s,k}に属さない行列の中で最小次数のものは 10次置換行列 A11,1 =

P(1 2 4 8 5 10 9 7 3 6) である．（実際，(Z/sZ)× (s ̸= 2r ± 1)の部分群 ⟨2,−1⟩の位数が最小となる
のは s = 11のときである．）この行列 A11,1 についての δ = 0の Kaprekar方程式を解くと，

x(t) =
t

11



9
7
5
3
1
10
8
6
4
2


− 1

33



10
20
19
7
28
38
26
14
13
−10


が得られる．x(t)の各成分を通分し，分子を 3を法として考えると，±1のいずれかとなるため，い
ずれの成分も整数とはならない．したがって，x(t)は正則解ではない．

簡単な考察により，As,kJ = JAs,k が成り立つことがわかる．一般に，J と可換な置換行列に関し
ては次が成立する．

命題 3.6. P を置換行列とする．P, J が可換であるとき, M(P )は正則である．

系 3.7. 行列 As,k に関する Kaprekar行列M(As,k)は正則である．すなわち，置換行列 P が Class

Aに含まれるとき，M(P )は正則である．

4 Class B

桁数が奇数の場合は，偶数の場合と異なり置換行列のある種の対称性が見られないため，正則単位
解を与える置換行列の厳密な決定には至っていない．ただし，観察の範囲内では正則単位解を与える
すべての置換行列は，次に示す {Bn}に属するものであった．

定義 4.1. nを奇数とする．n次行列 Bn を次で定める：

Bn := P(n−1 n)Pσn , σn(i) =

{
2i if i ≤ (n− 1)/2,
2i− n if i > (n− 1)/2.



Kaprekar行列M(Bn)が正則ならば，Bn による Kaprekar方程式の唯一の解は

x(t) =
2t

n+ 1



(n− 1)/2
...
1

(n+ 1)/2
...
1


− Lcn(0)

である．xは正則解であり，n ≤ 20の範囲では単位解であることも確かめられる．
一般の奇数 nに関して，Bn の Kaprekar行列M(Bn)が正則であるとは限らない．

例 4.2. rank(M(B9)) = 8であり，B9 による Kaprekar方程式の解は

x(t) =



t− s
t− 2s
t− 3s
s− 1
t− 1

t− 1− s
3s− 1
2s− 1

s


となる．ここで sに適当な tの 1次式を代入することにより，複数の正則解が得られる．
以下は s =

t

5
,
t+ 1

5
,
t+ 1

6
,
11t− 49

60
の例である．

1

5



4t
3t
2t

t− 5
5t− 5
4t− 5
3t− 5
2t− 5

t


,

1

5



4t− 1
3t− 2
2t− 3
t− 4
5t− 5
4t− 6
3t− 2
2t− 3
t+ 1


,

1

6



5t− 1
4t− 2
3t− 3
t− 5
6t− 6
5t− 7
3t− 3
2t− 4
t+ 1


,

1

60



49t+ 49
38t+ 98
27t+ 147
11t− 109
60t− 60
49t− 11
33t− 207
22t− 158
11t− 49


それぞれ，t ≡ 0 (mod 5), t ≡ 4 (mod 5), t ≡ 5 (mod 6), t ≡ 29 (mod 60)のとき，すべての成
分が整数となる．したがって，t = 29では少なくとも 3個の Kaprekar数を得られることがわかる．
一般に tが増加するほど得られる Kaprekar数の個数も増加する．

予想 4.3. Class B = {Bn}n である．

5 Class C

定義 5.1. aを t0 進 n桁の Kaprekar数とする．a = x(t0)となるような複合解 x(t)が存在しない
とき，aを単位 Kaprekar数と呼ぶ．



観察から，δ = 0の場合，非特異な単位 Kaprekar数は {As,k}または {Bn}に対応するものであっ
た．同様に，δ = 0においては，一定の手続きで特異な単位 Kaprekar数を与えることができると予
想される．具体的には，以下の手続きである．
tが偶数のとき，

st = (t− 1 t− 3 · · · 3 0 t− 2 t− 4 · · · 2 1)
T

は t進 t桁 Kaprekar数となる．st は一般に単位 Kaprekar数ではない．次式は，st に Kaprekar操
作を施した場合の計算を筆算の形で示したものである．

t− 1 t− 2 · · · t/2 + 1 t/2 t/2− 1 · · · 1 0
− 0 1 · · · t/2− 2 t/2− 1 t/2 · · · t− 2 t− 1

t− 1 t− 3 · · · 3 0 t− 2 · · · 2 1
(6)

このとき，ほぼすべての位で，上段，中段，下段はそれぞれ α, −α, 2α となっている．ただし，
α = α+ Z/(t− 1)Z ∈ Z/(t− 1)Z．例外は下から 1, t/2 + 1番目の位のみであり，これらは下段の
0と 1が逆転している．したがって，集合 Z/(t − 1)Zへの (Z/(t − 1)Z)× の部分群 ⟨2,−1⟩の作用
を考えた場合，例外の位に現れる {0}と ⟨2,−1⟩自身を除き，各軌道の要素は式 (6)の上段，中段，
下段ともにそれぞれ共通の位を占めることがわかる．それらを削除しても式 (6)は成立し，より小さ
な桁の Kaprekar数が得られる．観察の範囲において，それらはすべて単位 Kaprekar数であった．

定義 5.2. 偶数 t ≥ 4に対して，定義 3.1の置換行列 At−1,1 を用いて置換行列 Ct を

Ct = P(n−1 n)

1 O 0
O At−1,1 O
0 O 1


と定める．ただし，At−1,1 の次数は n− 2であるとする．

Ct による Kaprekar方程式の解 x(t)は特異解となる．なぜならば，δ = 0のとき，置換行列 P に
よる Kaprekar方程式の解 x(t)が正則解であるための必要条件は P ∈ {As,k}であったが，As,k の
(1, 1)成分は 0であり，Ct ̸∈ {As,k}となるためである．
tが奇数のときも，

(t− 1 t− 2 · · · 2 0 t− 1 t− 2 · · · 2 1 1)
T

に対して，同様の議論が可能である．ただし，桁を削除して得られた Kaprekar数に対応する置換は
複数あり，そのすべてが特異解を導くため，代表となる置換は恣意的となり得る．ここでは，Bn か
ら，削除した桁に対応する行と列を削除した行列を Ct とする．
以上の手続きでは得られない特異な単位 Kaprekar数も存在する．表 1の例外 1がその例である．
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基数 単位 Kaprekar数 置換行列
3 20211 B5

4 132 B3

3021 C4

5 13 A3,1

3032 A5,1

432043211 C5

6 253 B3

41532 B5

420432 A7,1

530421 C6

7 65430653211 C7

8 25 A3,1

374 B3

640632 A9,1

6417532 B7

75306421 C8

9 62853 B5

753186532 B9

87654320876543211 C9

10 495 B3

6174 A5,1

97508421 C10

864197532 B9

11 37 A3,1

74318764 A17,3

97518532 B9

A9875430A97653211 C11

12 5B6 B3

83B74 B5

962B853 B7

A850A632 A15,1

A8641B97532 B11

B97530A86421 C12

BA986530BA8653211 例外 1

基数 単位 Kaprekar数 置換行列
13 951A74 A3,1

A97542CC987533 例外 A

BA9775431CCA98755322 例外 B

14 49 A3,1

6D7 B3

CA70C632 A17,1

B852DA853 B9

CA8641DB97532 B15

DB97530CA86421 C14

15 92B6 A5,1

A4E95 B5

C962EB853 B9

DB98631ECB86532 B15

DB97541ECA97532 B15

16 7F8 B3

C83FB74 B7

DA72FC853 B9

FDB70E8421 C16

ECA8641FDB97532 B15

17 5B A3,1

D91E74 A9,1

EB82GD853 B9

DC9753GGCB9744 例外 A

FDB8651GEBA8532 B15

FDB9741GEC97532 B15

18 8H9 B3

C5HB6 B5

C7652ECBA6 A31,5

HFD90G8421 C18

FC962HEB853 B11

EDA763HHDBA744 例外 A

GEC9751HFCA8532 B15

GECA8641HFDB97532 B17

表 1 単位 Kaprekar 数 (3 < t ≤ 18, n ≤ 20) の一覧．例外 1 は Class C に含まれ，例外 A,B

は δ ≥ 1である．


